手機(jī)閱讀
工作范文
整式及因式分解教案(優(yōu)質(zhì)19篇)
  • 時(shí)間:2023-11-25 05:03:46
  • 小編:zdfb
  • 文件格式 DOC
下載文章
一鍵復(fù)制
猜你喜歡 網(wǎng)友關(guān)注 本周熱點(diǎn) 精品推薦
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄段哪??這
寫讀后感絕不是對(duì)原文的抄錄或簡(jiǎn)單地復(fù)述,不能脫離原文任意發(fā)揮,應(yīng)以寫“體會(huì)”為主。讀后感對(duì)于我們來說是非常有幫助的,那么我們?cè)撊绾螌懞靡黄x后感呢?以下是小編為
現(xiàn)今社會(huì)公眾的法律意識(shí)不斷增強(qiáng),越來越多事情需要用到合同,合同協(xié)調(diào)著人與人,人與事之間的關(guān)系。相信很多朋友都對(duì)擬合同感到非常苦惱吧。以下是我為大家搜集的合同范文
確定目標(biāo)是置頂工作方案的重要環(huán)節(jié)。在公司計(jì)劃開展某項(xiàng)工作的時(shí)候,我們需要為領(lǐng)導(dǎo)提供多種工作方案。那么方案應(yīng)該怎么制定才合適呢?以下就是小編給大家講解介紹的相關(guān)方
制定計(jì)劃前,要分析研究工作現(xiàn)狀,充分了解下一步工作是在什么基礎(chǔ)上進(jìn)行的,是依據(jù)什么來制定這個(gè)計(jì)劃的。優(yōu)秀的計(jì)劃都具備一些什么特點(diǎn)呢?又該怎么寫呢?下面我?guī)痛蠹艺?/div>
在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。相信許多人會(huì)覺得范文很難寫?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。元
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會(huì)覺得范文很難寫?下面是小編幫大家整理的優(yōu)
在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧事業(yè)有成祝
在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。那么我們?cè)撊绾螌懸黄^為完美的范文呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。學(xué)
人的記憶力會(huì)隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。范文怎么寫才能發(fā)揮它最大的作用呢?這里我整理
在當(dāng)下社會(huì),接觸并使用報(bào)告的人越來越多,不同的報(bào)告內(nèi)容同樣也是不同的。怎樣寫報(bào)告才更能起到其作用呢?報(bào)告應(yīng)該怎么制定呢?下面是小編帶來的優(yōu)秀報(bào)告范文,希望大家能
總結(jié)是在一段時(shí)間內(nèi)對(duì)學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它可以促使我們思考,我想我們需要寫一份總結(jié)了吧。那么我們?cè)撊绾螌懸黄^為完美的總結(jié)呢?下面
時(shí)間流逝得如此之快,前方等待著我們的是新的機(jī)遇和挑戰(zhàn),是時(shí)候開始寫計(jì)劃了。我們?cè)撛趺磾M定計(jì)劃呢?以下是小編為大家收集的計(jì)劃范文,僅供參考,大家一起來看看吧。出納
演講稿是一種實(shí)用性比較強(qiáng)的文稿,是為演講準(zhǔn)備的書面材料。在現(xiàn)在的社會(huì)生活中,用到演講稿的地方越來越多。那么演講稿怎么寫才恰當(dāng)呢?那么下面我就給大家講一講演講稿怎
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?以下是小
在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。范文書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄段哪??這里我整理了一些優(yōu)秀的范文,希望對(duì)大家有所幫助,下面我們
在經(jīng)濟(jì)發(fā)展迅速的今天,報(bào)告不再是罕見的東西,報(bào)告中提到的所有信息應(yīng)該是準(zhǔn)確無誤的。報(bào)告書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄獔?bào)告呢?下面是我給大家整理的報(bào)告范文
隨著法律法規(guī)不斷完善,人們?cè)桨l(fā)重視合同,關(guān)于合同的利益糾紛越來越多,在達(dá)成意見一致時(shí),制定合同可以享有一定的自由。怎樣寫合同才更能起到其作用呢?合同應(yīng)該怎么制定
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。范文怎么寫才能發(fā)揮它最大的作用呢?這里我整理了一些優(yōu)秀
從某件事情上得到收獲以后,寫一篇心得感悟,記錄下來,這么做可以讓我們不斷思考不斷進(jìn)步。那么心得感悟該怎么寫?想必這讓大家都很苦惱吧。下面小編給大家?guī)黻P(guān)于學(xué)習(xí)心
人的記憶力會(huì)隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注
人的記憶力會(huì)隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?
為有力保證事情或工作開展的水平質(zhì)量,預(yù)先制定方案是必不可少的,方案是有很強(qiáng)可操作性的書面計(jì)劃。方案的格式和要求是什么樣的呢?下面是小編精心整理的方案策劃范文,歡
在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。范文怎么寫才能發(fā)揮它最大的作用呢?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧個(gè)人崗位工作承諾書篇
演講稿是演講者根據(jù)幾條原則性的提綱進(jìn)行演講,比較靈活,便于臨場(chǎng)發(fā)揮,真實(shí)感強(qiáng),又具有照讀式演講和背誦式演講的長處。那么我們寫演講稿要注意的內(nèi)容有什么呢?接下來我
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?下面是小
體會(huì)是指將學(xué)習(xí)的東西運(yùn)用到實(shí)踐中去,通過實(shí)踐反思學(xué)習(xí)內(nèi)容并記錄下來的文字,近似于經(jīng)驗(yàn)總結(jié)。好的心得體會(huì)對(duì)于我們的幫助很大,所以我們要好好寫一篇心得體會(huì)下面我?guī)痛?/div>
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?下面是小
時(shí)間流逝得如此之快,我們的工作又邁入新的階段,請(qǐng)一起努力,寫一份計(jì)劃吧。計(jì)劃書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄?jì)劃呢?這里給大家分享一些最新的計(jì)劃書范文,方
為了確定工作或事情順利開展,常常需要預(yù)先制定方案,方案是為某一行動(dòng)所制定的具體行動(dòng)實(shí)施辦法細(xì)則、步驟和安排等。怎樣寫方案才更能起到其作用呢?方案應(yīng)該怎么制定呢?
人生天地之間,若白駒過隙,忽然而已,我們又將迎來新的喜悅、新的收獲,一起對(duì)今后的學(xué)習(xí)做個(gè)計(jì)劃吧。計(jì)劃書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄?jì)劃呢?下面我?guī)痛蠹艺?/div>
人的記憶力會(huì)隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面是
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面我給大家整理
工作學(xué)習(xí)中一定要善始善終,只有總結(jié)才標(biāo)志工作階段性完成或者徹底的終止。通過總結(jié)對(duì)工作學(xué)習(xí)進(jìn)行回顧和分析,從中找出經(jīng)驗(yàn)和教訓(xùn),引出規(guī)律性認(rèn)識(shí),以指導(dǎo)今后工作和實(shí)踐
無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。范文書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄段哪兀窟@里我整理了一些優(yōu)秀的范
演講稿具有宣傳,鼓動(dòng),教育和欣賞等作用,它可以把演講者的觀點(diǎn),主張與思想感情傳達(dá)給聽眾以及讀者,使他們信服并在思想感情上產(chǎn)生共鳴。大家想知道怎么樣才能寫得一篇好
人的記憶力會(huì)隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。范文怎么寫才能發(fā)揮它最大的作用呢?下面是小編
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?以下
無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會(huì)覺得范文很難寫?下面是小編幫大家整理的優(yōu)
計(jì)劃是提高工作與學(xué)習(xí)效率的一個(gè)前提。做好一個(gè)完整的工作計(jì)劃,才能使工作與學(xué)習(xí)更加有效的快速的完成。那關(guān)于計(jì)劃格式是怎樣的呢?而個(gè)人計(jì)劃又該怎么寫呢?以下是小編收
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。那么我們?cè)撊绾螌懸黄^為完美的范文呢?以下是小編為大
光陰的迅速,一眨眼就過去了,成績已屬于過去,新一輪的工作即將來臨,寫好計(jì)劃才不會(huì)讓我們努力的時(shí)候迷失方向哦。相信許多人會(huì)覺得計(jì)劃很難寫?這里給大家分享一些最新的
無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。范文書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄段哪??以下是我為大家搜集的?yōu)質(zhì)
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?下面是小編
當(dāng)我們備受啟迪時(shí),常??梢詫⑺鼈儗懗梢黄牡酶形?,如此就可以提升我們寫作能力了。我們?nèi)绾尾拍軐懙靡黄獌?yōu)質(zhì)的心得感悟呢?下面我?guī)痛蠹艺覍げ⒄砹艘恍﹥?yōu)秀的心得感悟
光陰的迅速,一眨眼就過去了,成績已屬于過去,新一輪的工作即將來臨,寫好計(jì)劃才不會(huì)讓我們努力的時(shí)候迷失方向哦。那么我們?cè)撊绾螌懸黄^為完美的計(jì)劃呢?這里給大家分享
當(dāng)我們備受啟迪時(shí),常常可以將它們寫成一篇心得體會(huì),如此就可以提升我們寫作能力了。好的心得體會(huì)對(duì)于我們的幫助很大,所以我們要好好寫一篇心得體會(huì)以下我給大家整理了一
人的記憶力會(huì)隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面是
在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來看看吧。過春節(jié)說
無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。相信許多人會(huì)覺得范文很難寫?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,
在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。那么我們?cè)撊绾螌懸黄^為完美的范文呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。留
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。相信許多人會(huì)覺得范文很難寫?接下來小編就給大家介紹一下
在平日里,心中難免會(huì)有一些新的想法,往往會(huì)寫一篇心得感悟,從而不斷地豐富我們的思想。那么心得感悟該怎么寫?想必這讓大家都很苦惱吧。以下我給大家整理了一些優(yōu)質(zhì)的心
在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。范文書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄段哪兀肯旅媸切【帋痛蠹艺淼膬?yōu)質(zhì)范文,僅供參考,大家一起來看看
在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。范文書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄段哪??接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面是小編為大
時(shí)間流逝得如此之快,我們的工作又邁入新的階段,請(qǐng)一起努力,寫一份計(jì)劃吧。怎樣寫計(jì)劃才更能起到其作用呢?計(jì)劃應(yīng)該怎么制定呢?那么下面我就給大家講一講計(jì)劃書怎么寫才
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。那么我們?cè)撊绾螌懸黄^為完美的范文呢?接下來小編就給
時(shí)間流逝得如此之快,前方等待著我們的是新的機(jī)遇和挑戰(zhàn),是時(shí)候開始寫計(jì)劃了。計(jì)劃書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄?jì)劃呢?這里給大家分享一些最新的計(jì)劃書范文,
計(jì)劃是提高工作與學(xué)習(xí)效率的一個(gè)前提。做好一個(gè)完整的工作計(jì)劃,才能使工作與學(xué)習(xí)更加有效的快速的完成。優(yōu)秀的計(jì)劃都具備一些什么特點(diǎn)呢?又該怎么寫呢?以下我給大家整理
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面是小編為大家
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?以
無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供
演講稿首先必須開頭要開門見山,既要一下子抓住聽眾又要提出你的觀點(diǎn),中間要用各種方法和所準(zhǔn)備的材料說明、支持你的論點(diǎn),感染聽眾,然后在結(jié)尾加強(qiáng)說明論點(diǎn)或得出結(jié)論,
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?下
在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。范文怎么寫才能發(fā)揮它最大的作用呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。教師遠(yuǎn)
人的記憶力會(huì)隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?
無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面是小編為大家收集的優(yōu)秀范文,供大
要寫好演講稿,首先必須要了解聽眾對(duì)象,了解他們的心理、愿望和要求是什么,使演講有針對(duì)性,能解決實(shí)際問題。我們想要好好寫一篇演講稿,可是卻無從下手嗎?以下是我?guī)痛?/div>
無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?以下是我為大家搜集的優(yōu)質(zhì)范文,
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?下面
無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面我給大家整理了一些優(yōu)秀范文,希望
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?以下是小
隨著法治精神地不斷發(fā)揚(yáng),人們愈發(fā)重視合同,越來越多的人通過合同來調(diào)和民事關(guān)系,合同能夠促使雙方正確行使權(quán)力,嚴(yán)格履行義務(wù)。怎樣寫合同才更能起到其作用呢?合同應(yīng)該
當(dāng)我們備受啟迪時(shí),常??梢詫⑺鼈儗懗梢黄牡皿w會(huì),如此就可以提升我們寫作能力了。那么心得體會(huì)怎么寫才恰當(dāng)呢?下面我給大家整理了一些心得體會(huì)范文,希望能夠幫助到大
時(shí)間流逝得如此之快,前方等待著我們的是新的機(jī)遇和挑戰(zhàn),是時(shí)候開始寫計(jì)劃了。優(yōu)秀的計(jì)劃都具備一些什么特點(diǎn)呢?又該怎么寫呢?下面是小編為大家?guī)淼挠?jì)劃書優(yōu)秀范文,希
演講作為人類一種社會(huì)實(shí)踐活動(dòng),它必須具備以下幾個(gè)條件:演講者、聽眾、溝通二者的媒介以及時(shí)間、環(huán)境。優(yōu)質(zhì)的演講稿該怎么樣去寫呢?以下是我?guī)痛蠹艺淼难葜v稿模板范文
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。那么我們?cè)撊绾螌懸黄^為完美的范文呢?這里我整理了一
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。相信許多人會(huì)覺得范文很難寫?下面是小編幫大家整理的優(yōu)
人的記憶力會(huì)隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。相信許多人會(huì)覺得范文很難寫?這里我整理了一些
為了確保我們的努力取得實(shí)效,就不得不需要事先制定方案,方案是書面計(jì)劃,具有內(nèi)容條理清楚、步驟清晰的特點(diǎn)。方案書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄桨改??以下?/div>
使用正確的寫作思路書寫演講稿會(huì)更加事半功倍。在日常生活和工作中,能夠利用到演講稿的場(chǎng)合越來越多。好的演講稿對(duì)于我們的幫助很大,所以我們要好好寫一篇演講稿以下我給
無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們?cè)撊绾螌懸黄^為完美的范文呢?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參
人的記憶力會(huì)隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?
無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。相信許多人會(huì)覺得范文很難寫?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面是小編為大
人的記憶力會(huì)隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。范文怎么寫才能發(fā)揮它最大的作用呢?下面是小編
隨著個(gè)人素質(zhì)的提升,報(bào)告使用的頻率越來越高,我們?cè)趯憟?bào)告的時(shí)候要注意邏輯的合理性。報(bào)告的格式和要求是什么樣的呢?下面是我給大家整理的報(bào)告范文,歡迎大家閱讀分享借
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。范文怎么寫才能發(fā)揮它最大的作用呢?下面是小編為大家收集
為了確定工作或事情順利開展,常常需要預(yù)先制定方案,方案是為某一行動(dòng)所制定的具體行動(dòng)實(shí)施辦法細(xì)則、步驟和安排等。方案能夠幫助到我們很多,所以方案到底該怎么寫才好呢
為確保事情或工作順利開展,常常要根據(jù)具體情況預(yù)先制定方案,方案是綜合考量事情或問題相關(guān)的因素后所制定的書面計(jì)劃。優(yōu)秀的方案都具備一些什么特點(diǎn)呢?又該怎么寫呢?接
方案是從目的、要求、方式、方法、進(jìn)度等都部署具體、周密,并有很強(qiáng)可操作性的計(jì)劃。方案能夠幫助到我們很多,所以方案到底該怎么寫才好呢?以下就是小編給大家講解介紹的
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文怎么寫才能發(fā)揮它最大的作用呢?下面是小編幫大家整
隨著社會(huì)不斷地進(jìn)步,報(bào)告使用的頻率越來越高,報(bào)告具有語言陳述性的特點(diǎn)。優(yōu)秀的報(bào)告都具備一些什么特點(diǎn)呢?又該怎么寫呢?下面是我給大家整理的報(bào)告范文,歡迎大家閱讀分
隨著法治精神地不斷發(fā)揚(yáng),人們愈發(fā)重視合同,越來越多的人通過合同來調(diào)和民事關(guān)系,合同能夠促使雙方正確行使權(quán)力,嚴(yán)格履行義務(wù)。那么合同書的格式,你掌握了嗎?下面是我
在當(dāng)下這個(gè)社會(huì)中,報(bào)告的使用成為日常生活的常態(tài),報(bào)告具有成文事后性的特點(diǎn)。怎樣寫報(bào)告才更能起到其作用呢?報(bào)告應(yīng)該怎么制定呢?下面是小編幫大家整理的最新報(bào)告范文,
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。那么我們?cè)撊绾螌懸黄^為完美的范文呢?以下是我為大家
無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。范文怎么寫才能發(fā)揮它最大的作用呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。那么我們?cè)撊绾螌懸黄^為完美的范文呢?這里我整理了一些
整式及因式分解教案(優(yōu)質(zhì)19篇)
2023-11-25 05:03:46    小編:zdfb

教案的編寫要注意語言簡(jiǎn)潔明了,有利于教學(xué)過程的順利展開。教案中的教學(xué)方法要多樣化,包括講授、示范、討論、實(shí)驗(yàn)等多種形式。教案范文中的教學(xué)思路和教學(xué)方法值得我們借鑒和學(xué)習(xí)。

整式及因式分解教案篇一

教學(xué)目標(biāo):

1、進(jìn)一步鞏固因式分解的概念;2、鞏固因式分解常用的三種方法。

3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來解決一些實(shí)際問題。

5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣。

教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問題。

教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?xí)2、3。

教學(xué)過程:

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識(shí)回顧。

1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。

2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.

分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式.

(2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式.(3).要分解到不能分解為止.

4、強(qiáng)化訓(xùn)練。

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識(shí)應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

1.計(jì)算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)。

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

整式及因式分解教案篇二

教學(xué)設(shè)計(jì)示例。

――完全平方公式(1)。

教學(xué)目標(biāo)。

2.理解完全平方式的意義和特點(diǎn),培養(yǎng)學(xué)生的判斷能力.

3.進(jìn)一步培養(yǎng)學(xué)生全面地觀察問題、分析問題和逆向思維的能力.。

4.通過分解因式的教學(xué),使學(xué)生進(jìn)一步體會(huì)“把一個(gè)代數(shù)式看作一個(gè)字母”的換元思想。

教學(xué)重點(diǎn)和難點(diǎn)。

重點(diǎn):運(yùn)用完全平方式分解因式.

難點(diǎn):靈活運(yùn)用完全平方公式公解因式.

教學(xué)過程設(shè)計(jì)。

一、復(fù)習(xí)。

1.問:什么叫把一個(gè)多項(xiàng)式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?

答:把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積形式,叫做把這個(gè)多項(xiàng)式因式分解.我們學(xué)過的因式分解的方法有提取公因式法及運(yùn)用平方差公式法.

2.把下列各式分解因式:

(1)ax4-ax2(2)16m4-n4.

解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。

(2)16m4-n4=(4m2)2-(n2)2。

=(4m2+n2)(4m2-n2)。

=(4m2+n2)(2m+n)(2m-n).

問:我們學(xué)過的乘法公式除了平方差公式之外,還有哪些公式?

答:有完全平方公式.

請(qǐng)寫出完全平方公式.

完全平方公式是:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.

這節(jié)課我們就來討論如何運(yùn)用完全平方公式把多項(xiàng)式因式分解.

二、新課。

和討論運(yùn)用平方差公式把多項(xiàng)式因式分解的思路一樣,把完全平方公式反過來,就得到。

a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.

這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個(gè)公式就是完全平方公式.運(yùn)用這兩個(gè)式子,可以把形式是完全平方式的多項(xiàng)式分解因式.

問:具備什么特征的多項(xiàng)是完全平方式?

答:一個(gè)多項(xiàng)式如果是由三部分組成,其中的兩部分是兩個(gè)式子(或數(shù))的平方,并且這兩部分的符號(hào)都是正號(hào),第三部分是上面兩個(gè)式子(或數(shù))的乘積的二倍,符號(hào)可正可負(fù),像這樣的式子就是完全平方式.

問:下列多項(xiàng)式是否為完全平方式?為什么?

(1)x2+6x+9;(2)x2+xy+y2;

(3)25x4-10x2+1;(4)16a2+1.

答:(1)式是完全平方式.因?yàn)閤2與9分別是x的平方與3的平方,6x=2·x·3,所以。

x2+6x+9=(x+3).

(2)不是完全平方式.因?yàn)榈谌糠直仨毷?xy.

(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。

25x-10x+1=(5x-1).

(4)不是完全平方式.因?yàn)槿钡谌糠?

答:完全平方公式為:

其中a=3x,b=y,2ab=2·(3x)·y.

例1把25x4+10x2+1分解因式.

分析:這個(gè)多項(xiàng)式是由三部分組成,第一項(xiàng)“25x4”是(5x2)的平方,第三項(xiàng)“1”是1的平方,第二項(xiàng)“10x2”是5x2與1的積的2倍.所以多項(xiàng)式25x4+10x2+1是完全平方式,可以運(yùn)用完全平方公式分解因式.

解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.

例2把1-m+分解因式.

問:請(qǐng)同學(xué)分析這個(gè)多項(xiàng)式的特點(diǎn),是否可以用完全平方公式分解因式?有幾種解法?

答:這個(gè)多項(xiàng)式由三部分組成,第一項(xiàng)“1”是1的平方,第三項(xiàng)“”是的平方,第二項(xiàng)“-m”是1與m/4的積的2倍的相反數(shù),因此這個(gè)多項(xiàng)式是完全平方式,可以用完全平方公式分解因式.

解法11-m+=1-2·1·+()2=(1-)2.

解法2先提出,則。

1-m+=(16-8m+m2)。

=(42-2·4·m+m2)。

=(4-m)2.

第12頁。

整式及因式分解教案篇三

知識(shí)點(diǎn):

因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

教學(xué)目標(biāo):

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。

考查重難點(diǎn)與常見題型:

考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

教學(xué)過程:

多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

(1)提公因式法。

如多項(xiàng)式。

其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式,m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

(2)運(yùn)用公式法,即用寫出結(jié)果。

(3)十字相乘法。

(4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

(5)求根公式法:如果有兩個(gè)根x1,x2,那么。

2、教學(xué)實(shí)例:學(xué)案示例。

3、課堂練習(xí):學(xué)案作業(yè)。

4、課堂:

5、板書:

6、課堂作業(yè):學(xué)案作業(yè)。

7、教學(xué)反思:

整式及因式分解教案篇四

3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解。

5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣。

靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒?,拓展練?xí)2、3。

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識(shí)回顧。

1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。

2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.

分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式.

(2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式.(3).要分解到不能分解為止.

4、強(qiáng)化訓(xùn)練。

教學(xué)引入。

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長方形折疊就可以得到一個(gè)正方形?,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

動(dòng)畫演示:

場(chǎng)景一:正方形折疊演示。

師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長度、各角的大小、對(duì)角線的長度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長度。

[學(xué)生活動(dòng):各自測(cè)量。]。

鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

講授新課。

找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

動(dòng)畫演示:

場(chǎng)景二:正方形的性質(zhì)。

師:這些性質(zhì)里那些是矩形的性質(zhì)?

[學(xué)生活動(dòng):尋找矩形性質(zhì)。]。

動(dòng)畫演示:

場(chǎng)景三:矩形的性質(zhì)。

師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

[學(xué)生活動(dòng);尋找菱形性質(zhì)。]。

動(dòng)畫演示:

場(chǎng)景四:菱形的性質(zhì)。

師:這說明正方形具有矩形和菱形的全部性質(zhì)。

及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。

師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]。

師:請(qǐng)同學(xué)們回想矩形與菱形的`定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

“有一組鄰邊相等的矩形叫做正方形?!?/p>

“有一個(gè)角是直角的菱形叫做正方形?!?/p>

“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?/p>

師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+。

例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識(shí)應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

整式及因式分解教案篇五

2.理解完全平方式的意義和特點(diǎn),培養(yǎng)學(xué)生的判斷能力.

3.進(jìn)一步培養(yǎng)學(xué)生全面地觀察問題、分析問題和逆向思維的能力.。

4.通過運(yùn)用公式法分解因式的教學(xué),使學(xué)生進(jìn)一步體會(huì)“把一個(gè)代數(shù)式看作一個(gè)字母”的換元思想。

教學(xué)重點(diǎn)和難點(diǎn)。

重點(diǎn):運(yùn)用完全平方式分解因式.

難點(diǎn):靈活運(yùn)用完全平方公式公解因式.

教學(xué)過程設(shè)計(jì)。

一、復(fù)習(xí)。

1.問:什么叫把一個(gè)多項(xiàng)式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?

答:把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積形式,叫做把這個(gè)多項(xiàng)式因式分解.我們學(xué)過的因式分解的方法有提取公因式法及運(yùn)用平方差公式法.

2.把下列各式分解因式:

(1)ax4-ax2(2)16m4-n4.

解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。

(2)16m4-n4=(4m2)2-(n2)2。

=(4m2+n2)(4m2-n2)。

=(4m2+n2)(2m+n)(2m-n).

問:我們學(xué)過的乘法公式除了平方差公式之外,還有哪些公式?

答:有完全平方公式.

請(qǐng)寫出完全平方公式.

完全平方公式是:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.

這節(jié)課我們就來討論如何運(yùn)用完全平方公式把多項(xiàng)式因式分解.

二、新課。

和討論運(yùn)用平方差公式把多項(xiàng)式因式分解的思路一樣,把完全平方公式反過來,就得到。

a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.

這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個(gè)公式就是完全平方公式.運(yùn)用這兩個(gè)式子,可以把形式是完全平方式的多項(xiàng)式分解因式.

問:具備什么特征的多項(xiàng)是完全平方式?

答:一個(gè)多項(xiàng)式如果是由三部分組成,其中的兩部分是兩個(gè)式子(或數(shù))的平方,并且這兩部分的符號(hào)都是正號(hào),第三部分是上面兩個(gè)式子(或數(shù))的乘積的二倍,符號(hào)可正可負(fù),像這樣的式子就是完全平方式.

問:下列多項(xiàng)式是否為完全平方式?為什么?

(1)x2+6x+9;(2)x2+xy+y2;

(3)25x4-10x2+1;(4)16a2+1.

x2+6x+9=(x+3).

(2)不是完全平方式.因?yàn)榈谌糠直仨毷?xy.

(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。

25x-10x+1=(5x-1).

(4)不是完全平方式.因?yàn)槿钡谌糠?

答:完全平方公式為:

其中a=3x,b=y,2ab=2·(3x)·y.

例1把25x4+10x2+1分解因式.

分析:這個(gè)多項(xiàng)式是由三部分組成,第一項(xiàng)“25x4”是(5x2)的平方,第三項(xiàng)“1”是1的平方,第二項(xiàng)“10x2”是5x2與1的積的2倍.所以多項(xiàng)式25x4+10x2+1是完全平方式,可以運(yùn)用完全平方公式分解因式.

解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.

例2把1-m+分解因式.

問:請(qǐng)同學(xué)分析這個(gè)多項(xiàng)式的特點(diǎn),是否可以用完全平方公式分解因式?有幾種解法?

答:這個(gè)多項(xiàng)式由三部分組成,第一項(xiàng)“1”是1的平方,第三項(xiàng)“”是的平方,第二項(xiàng)“-m”是1與m/4的積的2倍的相反數(shù),因此這個(gè)多項(xiàng)式是完全平方式,可以用完全平方公式分解因式.

解法11-m+=1-2·1·+2=(1-)2.

解法2先提出,則。

1-m+=(16-8m+m2)。

=(42-2·4·m+m2)。

=(4-m)2.

三、課堂練習(xí)(投影)。

1.填空:

(1)x2-10x+()2=()2;

(2)9x2+()+4y2=()2;

(3)1-()+m2/9=()2.

2.下列各多項(xiàng)式是不是完全平方式?如果是,可以分解成什么式子?如果不是,請(qǐng)把多。

項(xiàng)式改變?yōu)橥耆椒绞?

(1)x2-2x+4;(2)9x2+4x+1;(3)a2-4ab+4b2;

(4)9m2+12m+4;(5)1-a+a2/4.

3.把下列各式分解因式:

(1)a2-24a+144;(2)4a2b2+4ab+1;

(3)19x2+2xy+9y2;(4)14a2-ab+b2.

答案:

1.(1)25,(x-5)2;(2)12xy,(3x+2y)2;(3)2m/3,(1-m3)2.

2.(1)不是完全平方式,如果把第二項(xiàng)的“-2x”改為“-4x”,原式就變?yōu)閤2-4x+4,它是完全平方式;或把第三項(xiàng)的“4”改為1,原式就變?yōu)閤2-2x+1,它是完全平方式.

(2)不是完全平方式,如果把第二項(xiàng)“4x”改為“6x”,原式變?yōu)?x2+6x+1,它是完全平方式.

(3)是完全平方式,a2-4ab+4b2=(a-2b)2.

(4)是完全平方式,9m2+12m+4=(3m+2)2.

(5)是完全平方式,1-a+a2/4=(1-a2)2.

3.(1)(a-12)2;(2)(2ab+1)2;

(3)(13x+3y)2;(4)(12a-b)2.

四、小結(jié)。

運(yùn)用完全平方公式把一個(gè)多項(xiàng)式分解因式的.主要思路與方法是:

1.首先要觀察、分析和判斷所給出的多項(xiàng)式是否為一個(gè)完全平方式,如果這個(gè)多項(xiàng)式是一個(gè)完全平方式,再運(yùn)用完全平方公式把它進(jìn)行因式分解.有時(shí)需要先把多項(xiàng)式經(jīng)過適當(dāng)變形,得到一個(gè)完全平方式,然后再把它因式分解.

2.在選用完全平方公式時(shí),關(guān)鍵是看多項(xiàng)式中的第二項(xiàng)的符號(hào),如果是正號(hào),則用公式a2+2ab+b2=(a+b)2;如果是負(fù)號(hào),則用公式a2-2ab+b2=(a-b)2.

五、作業(yè)。

把下列各式分解因式:

1.(1)a2+8a+16;(2)1-4t+4t2;

(3)m2-14m+49;(4)y2+y+1/4.

2.(1)25m2-80m+64;(2)4a2+36a+81;

(3)4p2-20pq+25q2;(4)16-8xy+x2y2;

(5)a2b2-4ab+4;(6)25a4-40a2b2+16b4.

3.(1)m2n-2mn+1;(2)7am+1-14am+7am-1;

4.(1)x-4x;(2)a5+a4+a3.

答案:

1.(1)(a+4)2;(2)(1-2t)2;

(3)(m-7)2;(4)(y+12)2.

2.(1)(5m-8)2;(2)(2a+9)2;

(3)(2p-5q)2;(4)(4-xy)2;

(5)(ab-2)2;(6)(5a2-4b2)2.

3.(1)(mn-1)2;(2)7am-1(a-1)2.

4.(1)x(x+4)(x-4);(2)14a3(2a+1)2.

課堂教學(xué)設(shè)計(jì)說明。

1.利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì).

2.本節(jié)課要求學(xué)生掌握完全平方公式的特點(diǎn)和靈活運(yùn)用公式把多項(xiàng)式進(jìn)行因式分解的方法.在教學(xué)設(shè)計(jì)中安排了形式多樣的課堂練習(xí),讓學(xué)生從不同側(cè)面理解完全平方公式的特點(diǎn).例1和例2的講解可以在老師的引導(dǎo)下,師生共同分析和解答,使學(xué)生當(dāng)堂能夠掌握運(yùn)用平方公式進(jìn)行完全因式分解的方法.

整式及因式分解教案篇六

這節(jié)課學(xué)習(xí)的主要內(nèi)容是運(yùn)用平方差公式進(jìn)行因式分解,學(xué)習(xí)時(shí)如果直接就給同學(xué)們講把前面在整式的乘法中學(xué)習(xí)到的平方差公式反過來運(yùn)用就形成了因式分解的平方差公式,然后就是反復(fù)的運(yùn)用、反復(fù)的操練的話,學(xué)生學(xué)起來就會(huì)覺得沒有味道,對(duì)數(shù)學(xué)有一種厭煩感,所以我就想到了運(yùn)用逆向思維的方法來學(xué)習(xí)這節(jié)課的內(nèi)容。

在新課引入的過程中,我首先讓學(xué)生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。接著就讓學(xué)生利用平方差公式做三個(gè)整式乘法的運(yùn)算。然后,我巧妙的將剛才用平方差公式計(jì)算得出的三個(gè)多項(xiàng)式作為因式分解的題目請(qǐng)學(xué)生嘗試一下。只見我的題目一出來,學(xué)生就爭(zhēng)先恐后地回答出來了。待學(xué)生回答完之后,我馬上追問“為什么”時(shí),學(xué)生輕而易舉地講出是將原來的平方差公式反過來運(yùn)用,馬上使學(xué)生形成了一種逆向的思維方式。之后,我就順利地和同學(xué)們一起分析了因式分解中的平方差公式——兩數(shù)的平方差等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,討論了“怎樣的多項(xiàng)式能用平方差公式因式分解?”可以說,對(duì)新問題的引入,我是采取了由淺入深的方法,使學(xué)生對(duì)新知識(shí)不產(chǎn)生任何的畏懼感。接下來,通過例題的講解、練習(xí)的鞏固讓學(xué)生逐步掌握了運(yùn)用平方差公式進(jìn)行因式分解。

整式及因式分解教案篇七

“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。

2、教學(xué)目標(biāo)。

(1)會(huì)推導(dǎo)乘法公式。

(2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。

(3)會(huì)用提公因式法、公式法進(jìn)行因式分解。

(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

3、重點(diǎn)、難點(diǎn)和關(guān)鍵。

重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。

難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。

關(guān)鍵:正確理解乘法公式和因式分解的意義。

二、本單元教學(xué)的方法和策略:

3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).。

三、課時(shí)安排:

2.1平方差公式1課時(shí)。

2.2完全平方公式2課時(shí)。

整式及因式分解教案篇八

積的乘方運(yùn)算是把積中的每一個(gè)因式分別乘方,再把所得的冪相乘,在運(yùn)算中不要漏掉某個(gè)因式,同時(shí)要注意符號(hào)問題。

3.單項(xiàng)式與單項(xiàng)式相乘的步驟。

(1)確定積的系數(shù),積的系數(shù)等于各項(xiàng)系數(shù)的積;。

(2)同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;。

(3)只在單項(xiàng)式里出現(xiàn)的字母,要連同它的指數(shù)寫在積里。

4.單項(xiàng)式除以單項(xiàng)式的運(yùn)算步驟。

(1)把系數(shù)相除,所得結(jié)果作為商的系數(shù);。

(2)把同底數(shù)冪分別相除,所得結(jié)果作為商的一個(gè)因式;。

(3)只在被除式里出現(xiàn)的字母,要連同它的指數(shù)作為商的一個(gè)因式。

5.多項(xiàng)式除以單項(xiàng)式的運(yùn)算中應(yīng)注意的問題。

(2)多項(xiàng)式除以單項(xiàng)式,被除式里有幾項(xiàng),商也應(yīng)該有幾項(xiàng),不要漏項(xiàng)。

(3)多項(xiàng)式除以單項(xiàng)式是單項(xiàng)式乘多項(xiàng)式的逆運(yùn)算,可用其進(jìn)行檢驗(yàn)。

6.平方差公式的特點(diǎn)。

(1)左邊是兩個(gè)二項(xiàng)式相乘,并且這兩個(gè)二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù);。

(2)右邊是相同項(xiàng)的平方減去相反項(xiàng)的平方;。

(3)公式中的a和b可以表示具體的數(shù)或單項(xiàng)式,也可以是多項(xiàng)式。

7.完全平方公式的特點(diǎn)。

(1)兩個(gè)公式的等號(hào)左邊都是一個(gè)二項(xiàng)式的完全平方,兩者僅有一個(gè)"符號(hào)"不同;。

(2)兩個(gè)公式的等號(hào)右邊都是二次三項(xiàng)式,其中有兩項(xiàng)是等號(hào)左邊二項(xiàng)式中每一項(xiàng)的平方,中間一項(xiàng)是左邊二項(xiàng)式中兩項(xiàng)乘積的值2倍,兩者也僅有一個(gè)"符號(hào)"不同。

8.利用乘法公式求解方程或不等式的思路。

解涉及乘法公式的方程或不等式的題目時(shí),要先運(yùn)用平方差公式、完全平方公式,將原方程或不等式化簡(jiǎn),然后求解。

9.確定公因式的方法。

(2)確定相同字母:公因式應(yīng)取多項(xiàng)式各項(xiàng)中相同的字母;。

(4)確定公因式:由步驟(1)~(3)寫出多項(xiàng)式的公因式。

10.提公因式法的一般步驟。

(1)確定公因式:先確定系數(shù),再確定字母和字母的指數(shù);。

(3)把多項(xiàng)式寫成這兩個(gè)因式積的形式。

11.用提公因式法分解因式的口訣。

公因式,要提取,公約數(shù),取大值;公有字母提出來,字母次數(shù)要最低;原式除以公因式,商式寫在括號(hào)里。

整式及因式分解教案篇九

因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。

考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

如多項(xiàng)式。

其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式,m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

(2)運(yùn)用公式法,即用。

寫出結(jié)果。

(3)十字相乘法。

(4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

(5)求根公式法:如果有兩個(gè)根x1,x2,那么。

1、教學(xué)實(shí)例:學(xué)案示例。

2、課堂練習(xí):學(xué)案作業(yè)。

3、課堂:

4、板書:

5、課堂作業(yè):學(xué)案作業(yè)。

6、教學(xué)反思:

整式及因式分解教案篇十

1、會(huì)運(yùn)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法。

二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):

教學(xué)重點(diǎn)。

因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。

教學(xué)難點(diǎn):

應(yīng)用因式分解解方程涉及較多的推理過程。

三、教學(xué)過程。

(一)引入新課。

(二)師生互動(dòng),講授新課。

一個(gè)小問題:這里的x能等于3/2嗎?為什么?

想一想:那么(4x—9)(3—2x)呢?練習(xí):課本p162課內(nèi)練習(xí)。

合作學(xué)習(xí)。

等練習(xí):課本p162課內(nèi)練習(xí)2。

(三)梳理知識(shí),總結(jié)收獲因式分解的兩種應(yīng)用:

(四)布置課后作業(yè)。

作業(yè)本6、42、課本p163作業(yè)題(選做)。

整式及因式分解教案篇十一

3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解。

4、應(yīng)用因式分解來解決一些實(shí)際問題。

5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣。

靈活運(yùn)用因式分解解決問題。

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識(shí)回顧。

1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。

判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。

(7).2πr+2πr=2π(r+r)因式分解。

2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。

分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式。

(2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式。(3).要分解到不能分解為止。

4、強(qiáng)化訓(xùn)練。

試一試把下列各式因式分解:

(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識(shí)應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

2、20042+2004被2005整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù)。

五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

整式及因式分解教案篇十二

因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。

考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

因式分解知識(shí)點(diǎn)

多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

(1)提公因式法

如多項(xiàng)式

其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

(2)運(yùn)用公式法,即用

寫出結(jié)果。

(3)十字相乘法

(4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

(5)求根公式法:如果有兩個(gè)根x1,x2,那么

2、教學(xué)實(shí)例:學(xué)案示例

3、課堂練習(xí):學(xué)案作業(yè)

4、課堂:

5、板書:

6、課堂作業(yè):學(xué)案作業(yè)

7、教學(xué)反思:

整式及因式分解教案篇十三

知識(shí)點(diǎn):

因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

教學(xué)目標(biāo):

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。

考查重難點(diǎn)與常見題型:

考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

教學(xué)過程:

多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

如多項(xiàng)式。

其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式,m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

(2)運(yùn)用公式法,即用。

寫出結(jié)果。

(3)十字相乘法。

(4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

(5)求根公式法:如果有兩個(gè)根x1,x2,那么。

1、教學(xué)實(shí)例:學(xué)案示例。

2、課堂練習(xí):學(xué)案作業(yè)。

3、課堂:

4、板書:

5、課堂作業(yè):學(xué)案作業(yè)。

6、教學(xué)反思:

整式及因式分解教案篇十四

“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。

2、教學(xué)目標(biāo)。

(1)會(huì)推導(dǎo)乘法公式。

(2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。

(3)會(huì)用提公因式法、公式法進(jìn)行因式分解。

(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

3、重點(diǎn)、難點(diǎn)和關(guān)鍵。

重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。

難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。

關(guān)鍵:正確理解乘法公式和因式分解的意義。

3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).。

2.1平方差公式1課時(shí)。

2.2完全平方公式2課時(shí)。

2.3用提公因式法進(jìn)行因式分解1課時(shí)。

整式及因式分解教案篇十五

因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡(jiǎn)、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。

通過探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。

1、在分解因式的過程中體會(huì)整式乘法與因式分解之間的聯(lián)系。

2、通過公式a-b=(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。

3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。

4、通過活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

靈活運(yùn)用平方差公式進(jìn)行分解因式。

平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。

整式及因式分解教案篇十六

2、鞏固因式分解常用的三種方法。

3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解。

4、應(yīng)用因式分解來解決一些實(shí)際問題。

5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣。

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識(shí)回顧。

1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。

(7).2πr+2πr=2π(r+r)因式分解。

2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.

分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式.

(2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式.(3).要分解到不能分解為止.

4、強(qiáng)化訓(xùn)練。

試一試把下列各式因式分解:。

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識(shí)應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

2、20042+2004被2005整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

整式及因式分解教案篇十七

3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解。

4、應(yīng)用因式分解來解決一些實(shí)際問題。

5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣。

靈活運(yùn)用因式分解解決問題。

靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒?,拓展練?xí)2、3。

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識(shí)回顧。

1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。

判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。

(7)。2πr+2πr=2π(r+r)因式分解。

2、。規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。

分解因式要注意以下幾點(diǎn):(1)。分解的對(duì)象必須是多項(xiàng)式。

(2)。分解的結(jié)果一定是幾個(gè)整式的乘積的形式。(3)。要分解到不能分解為止。

4、強(qiáng)化訓(xùn)練。

教學(xué)引入。

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長方形折疊就可以得到一個(gè)正方形?,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

動(dòng)畫演示:

場(chǎng)景一:正方形折疊演示。

師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長度、各角的大小、對(duì)角線的長度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長度。

[學(xué)生活動(dòng):各自測(cè)量。]。

鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

講授新課。

找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

動(dòng)畫演示:

場(chǎng)景二:正方形的性質(zhì)。

師:這些性質(zhì)里那些是矩形的性質(zhì)?

[學(xué)生活動(dòng):尋找矩形性質(zhì)。]。

動(dòng)畫演示:

場(chǎng)景三:矩形的性質(zhì)。

師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

[學(xué)生活動(dòng);尋找菱形性質(zhì)。]。

動(dòng)畫演示:

場(chǎng)景四:菱形的性質(zhì)。

師:這說明正方形具有矩形和菱形的全部性質(zhì)。

及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。

師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]。

師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

“有一組鄰邊相等的矩形叫做正方形。”

“有一個(gè)角是直角的菱形叫做正方形?!?/p>

“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?/p>

師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

試一試把下列各式因式分解:。

(1)。1-x2=(1+x)(1-x)(2)。4a2+4a+1=(2a+1)2。

(3)。4x2-8x=4x(x-2)(4)。2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+。

例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識(shí)應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù)。

五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

整式及因式分解教案篇十八

大家好!今天我說課的內(nèi)容是《14.3.2公式法》(第一課時(shí)),主要內(nèi)容是用平方差公式分解因式。我準(zhǔn)備從教材的地位和作用、學(xué)情分析、學(xué)習(xí)目標(biāo)和重難點(diǎn)的確定、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面確定本節(jié)課。

一、教材的地位和作用。

因式分解是解析式的一種恒等變形,因式分解不但在解方程等問題中及其重要,在數(shù)學(xué)科學(xué)其他問題和一般科學(xué)研究中也具有廣泛應(yīng)用,是重要的數(shù)學(xué)基礎(chǔ)知識(shí)。因式分解的方法一般包括提公因式法、公式法、分組分解法、十字相乘法、待定系數(shù)法等。而在本章只學(xué)習(xí)提公因式法和公式法,這兩種基本知識(shí)和方法。它對(duì)數(shù)感和符號(hào)意識(shí)的形成具有重要作用,是進(jìn)一步學(xué)習(xí)分式和分式方程的基礎(chǔ)。在中考題中分式化簡(jiǎn)求值問題,不可避免地用到因式分解。而利用平方差公式進(jìn)行因式分解的基本方法。

二、學(xué)生的學(xué)情分析。

學(xué)生已經(jīng)學(xué)習(xí)了用字母表示數(shù)、整式的概念、整式的加、減、乘、除、乘方,以及用提公因式法分解因式,具備繼續(xù)學(xué)習(xí)知識(shí)的基礎(chǔ)和經(jīng)驗(yàn),但在細(xì)節(jié)方面還處在欠缺。

三、教學(xué)目標(biāo)的確定。

我認(rèn)真鉆研教材,在考慮學(xué)生的實(shí)際水平情況下,我設(shè)計(jì)如下教學(xué)目標(biāo)。

教學(xué)目標(biāo):

1、掌握平方差公式的特點(diǎn),能運(yùn)用平方差公式進(jìn)行因式分解。

2、掌握平方差公式分解因式的方法,掌握提公因式法、公式法分解因式綜合應(yīng)用。

3、經(jīng)歷探究平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性。

4、培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問題中的`應(yīng)用價(jià)值。

教學(xué)重點(diǎn):熟練運(yùn)用平方差公式進(jìn)行因式分解。

教學(xué)難點(diǎn):

1、掌握平方差公式的特點(diǎn)。

四、教學(xué)過程的設(shè)計(jì)。

本著學(xué)生的認(rèn)知規(guī)律是由淺入深、由易到難。因此在教學(xué)環(huán)節(jié)設(shè)計(jì)時(shí),我特意設(shè)計(jì)如下教學(xué)環(huán)節(jié):

第二環(huán)節(jié)讓學(xué)生帶著問題自學(xué)課本p116例題以前部分,嘗試回答下列問題:

(1)有什么特點(diǎn)?

(2)你能將它分解因式嗎?讓學(xué)生帶著問題去自學(xué),目的明確,針對(duì)性強(qiáng),通過學(xué)生發(fā)現(xiàn)并描述特點(diǎn),為下面公式剖析做了鋪墊。然后讓學(xué)生口答課本p117頁第一題用一組練習(xí)進(jìn)行鞏固加深對(duì)公式的認(rèn)識(shí),另外我選擇教材的練習(xí)題的目的是書本是我們學(xué)習(xí)的藍(lán)本,是專家們深思熟慮后的成果。

第三個(gè)環(huán)節(jié)通過小組互學(xué),探討公式。用3個(gè)問題,觀察公式回答下列問題:

(1)這個(gè)公式有什么特點(diǎn)?你能用語言敘述這個(gè)公式嗎?

(2)公式中字母a、b可以表示什么?

(3)因式分解平方差公式與我們前面所學(xué)的乘法公式平方差公式有什么區(qū)別?通過小組合作探究,學(xué)生深入探究,教師加以引導(dǎo),剖析公式,學(xué)習(xí)難點(diǎn)得以突破。

第四個(gè)環(huán)節(jié),在學(xué)生已經(jīng)掌握公式的基礎(chǔ)上,進(jìn)行運(yùn)用平方差公式進(jìn)行因式分解,由一組簡(jiǎn)單基礎(chǔ)題目入手,符合學(xué)生認(rèn)知規(guī)律,同時(shí)有利于增強(qiáng)學(xué)生的自信心。然后解決課前引入的問題,提出問題,便要解決問題,這樣前后呼應(yīng)。)。

第五個(gè)環(huán)節(jié)通過教師引導(dǎo),例題精講,讓學(xué)生掌握因式分解的方法。

(1)(2)(3)通過例題第一小題的設(shè)計(jì)目的是讓學(xué)生發(fā)現(xiàn)因式分解應(yīng)分解徹底,第二和第三個(gè)題目目的是讓學(xué)生能夠總結(jié)出因式分解的一般步驟:一提;二用;三查。教師要強(qiáng)調(diào)必須進(jìn)行到每一個(gè)多項(xiàng)式都不能分解為止。題目設(shè)計(jì)層層深入,符合學(xué)生認(rèn)知規(guī)律。然后通過嘗試練習(xí),學(xué)生進(jìn)行展示,便于發(fā)現(xiàn)學(xué)生的出現(xiàn)的問題,及時(shí)進(jìn)行糾正。

第六個(gè)環(huán)節(jié),檢驗(yàn)學(xué)生對(duì)本節(jié)課的掌握情況,我側(cè)重于學(xué)生收獲方面的體驗(yàn)。通過學(xué)生暢談收獲,有利于培養(yǎng)學(xué)生的自信心。

第七個(gè)環(huán)節(jié),通過四個(gè)題目,檢測(cè)學(xué)生本節(jié)課對(duì)知識(shí)的掌握情況。通過四個(gè)題目的設(shè)計(jì),旨在讓學(xué)生掌握公式的特點(diǎn),并會(huì)熟練地利用平方差公式進(jìn)行因式分解。其中第四題是實(shí)際問題,設(shè)計(jì)此題是為了讓學(xué)生學(xué)會(huì)用已有的知識(shí)解決實(shí)際問題。

以上是我對(duì)本節(jié)課的整體設(shè)計(jì)思路,不當(dāng)之處,敬請(qǐng)專家們批評(píng)指正!

整式及因式分解教案篇十九

“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。

2、教學(xué)目標(biāo)。

(1)會(huì)推導(dǎo)乘法公式。

(2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。

(3)會(huì)用提公因式法、公式法進(jìn)行因式分解。

(4)了解因式分解的一般步驟。

(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

3、重點(diǎn)、難點(diǎn)和關(guān)鍵。

重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。

難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。

關(guān)鍵:正確理解乘法公式和因式分解的意義。

3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).。

2.1平方差公式1課時(shí)。

2.2完全平方公式2課時(shí)。

初中優(yōu)秀......

初中(通用13篇)作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學(xué),教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。來參考自己需要的教案吧!下面是小編為......

您可能關(guān)注的文檔